Promoting potential of adipose derived stem cells on peripheral nerve regeneration
نویسندگان
چکیده
The ultimate goal of treating peripheral nerve defects is reconstructing continuity of the nerve stumps to regain nerve conduction and functional recovery. Clinically, autologous nerve grafts and Schwann cell (SC) therapy have limitations, such as the need for secondary surgery, sacrifice of another nerve and donor site complication. Adipose derived stem cells (ADSCs) may promise to be ideal alternative cells of SCs. To explore the potential of ADSCs promoting peripheral nerve regeneration, the present study investigated the influences of ADSCs on proliferation and neurotrophic function of SCs using co‑culture model in vitro. Western blot analysis, immunocytochemistry, a cell viability assay, reverse transcription‑polymerase chain reaction (RT‑PCR) and ELISA were applied for examining the interaction of ADSCs and SCs in a co‑culture model in vitro. Western blot analysis and immunocytochemistry demonstrated that protein expression levels of glial filament acidic protein (GFAP) and S100 in ADSCs co‑cultured with SCs for 14 days were significantly higher compared with cells cultured alone. Cell viability assay indicated that the cell viability of SCs co‑cultured with ADSCs for 3, 4, 5, 6 and 7 days was significantly higher than those cultured alone. RT‑PCR showed that expression levels of neurotrophic factors [nerve growth factor (NGF) and glial cell line‑derived neurotrophic factor (GDNF)] and extracellular matrix components [fibronectin (FN) and laminin (LN)] in SCs co‑cultured with ADSCs for 14 days were significantly higher than those in SCs cultured alone. NGF, GDNF, FN and LN in the supernatants of co‑culture system were significantly higher than cells cultured alone, as ELISA revealed. The results of this study suggested that the transplantation of ADSCs may have a promoting potential to the peripheral nerve regeneration as undifferentiated state.
منابع مشابه
The Long-term Effects of Uncultured Omental Adipose-derived Nucleated Cells Fraction and Bone-marrow Stromal Cells on Sciatic Nerve Regeneration
Objective- Adipose tissue is an appropriate source for isolation of cells with stem-cell–like properties. In the present long-term study, the effects of the omental adipose-derived nucleated cells (OADNCs) fraction were compared to those of the undifferentiated cultured bone marrow stromal cells (BMSCs) on sciatic nerve regeneration. Design- Experimental in vivo study. Animals- Fift...
متن کاملDifferentiation of Mouse Stem Cells into Neural Cells on PLGA Microspheres Scaffold
The cellular therapy and nerve tissue engineering will probably become a major therapeutic strategy for promoting axonal growth through injured area in central nervous system and peripheral nervous system in the coming years. The stem cell carrier scaffolds in nerve tissue engineering resulted in strong survival of cells and suitable differentiation into n...
متن کاملAugmenting Peripheral Nerve Regeneration Using Rat Hair Follicle Stem Cells (rHFSCs) in Rats
Introduction: Nowadays, cell therapy is the most advanced treatment of peripheral nerve injury. The aim of this study was to determine the effects of transplantation of hair follicle stem cells on the regeneration of the sciatic nerve injury in rats. Methods: The bulge region of the rat whisker was isolated and cultured. Morphological and biological features of the cultured bulge cells were ob...
متن کاملAdipose derived stem cells and nerve regeneration
Injuries to peripheral nerves are common and cause life-changing problems for patients alongside high social and health care costs for society. Current clinical treatment of peripheral nerve injuries predominantly relies on sacrificing a section of nerve from elsewhere in the body to provide a graft at the injury site. Much work has been done to develop a bioengineered nerve graft, precluding s...
متن کاملHealing Potential of Mesenchymal Stem Cells Cultured on a Collagen-Based Scaffold for Skin Regeneration
Background: Wound healing of burned skin remains a major goal in public health. Previous reports showed that the bone marrow stem cells were potent in keratinization and vascularization of full thickness skin wounds. Methods: In this study, mesenchymal stem cells were derived from rat adipose tissues and characterized by flowcytometry. Staining methods were used to evaluate their differentiatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2017